Nucleoprotein architectures regulating the directionality of viral integration and excision.
نویسندگان
چکیده
The virally encoded site-specific recombinase Int collaborates with its accessory DNA bending proteins IHF, Xis, and Fis to assemble two distinct, very large, nucleoprotein complexes that carry out either integrative or excisive recombination along regulated and essentially unidirectional pathways. The core of each complex consists of a tetramer of Integrase protein (Int), which is a heterobivalent DNA binding protein that binds and bridges a core-type DNA site (where strand cleavage and ligation are executed), and a distal arm-type site, that is brought within range by one or more DNA bending proteins. The recent determination of the patterns of these Int bridges has made it possible to think realistically about the global architecture of the recombinogenic complexes. Here, we combined the previously determined Int bridging patterns with in-gel FRET experiments and in silico modeling to characterize and differentiate the two 400-kDa multiprotein Holiday junction recombination intermediates formed during λ integration and excision. The results lead to architectural models that explain how integration and excision are regulated in λ site-specific recombination. Our confidence in the basic features of these architectures is based on the redundancy and self-consistency of the underlying data from two very different experimental approaches to establish bridging interactions, a set of strategic intracomplex distances from FRET experiments, and the model's ability to explain key aspects of the integrative and excisive recombination pathways, such as topological changes, the mechanism of capturing attB, and the features of asymmetry and flexibility within the complexes.
منابع مشابه
Evaluation of Crimean-Congo Hemorrhagic Fever Orthonairovirus AviTagged Nucleoprotein for Potential Application in Diagnosis
Background: Crimean-Congo hemorrhagic fever (CCHF) is an acute viral zoonotic disease, with a mortality rate of 30-50%. There is no approved vaccine or any specific antiviral treatment for CCHF; therefore, the rapid diagnosis seems to be crucial for both efficient supportive therapy and control of infection spread. In this study, the potency of recombinant nucleoprotein of virus expressed in pr...
متن کاملControl of Phage Bxb1 Excision by a Novel Recombination Directionality Factor
Mycobacteriophage Bxb1 integrates its DNA at the attB site of the Mycobacterium smegmatis genome using the viral attP site and a phage-encoded integrase generating the recombinant junctions attL and attR. The Bxb1 integrase is a member of the serine recombinase family of site-specific recombination proteins and utilizes small (<50 base pair) substrates for recombination, promoting strand exchan...
متن کاملEvaluating the Immunogenicity of Avian Influenza Virus Nucleoprotein
Background: Influenza viruses cause Avian Influenza (AI) is a serious infectious disease belonging to type A Orthomyxovirus. A viral RNA synthesis is due to an interaction of the nucleoprotein (NP) with the viral polymerase. In the present study, we have evaluated the immunogenicity of avian influenza virus nucleoprotein. Materials & Methods: An Influenza Virus N9H2 subtype A/Chicken I...
متن کاملA nucleoprotein complex mediates the integration of retroviral DNA.
The integration of viral DNA into the host genome is an essential step in the retrovirus life cycle. To understand this process better, we have examined the native state of viral DNA in cells acutely infected by murine leukemia virus (MLV), using both a physical assay for viral DNA and a functional assay for integration activity (Brown et al. 1987). The viral DNA and integration activity copuri...
متن کاملCoiled-coil interactions mediate serine integrase directionality
Serine integrases are bacteriophage enzymes that carry out site-specific integration and excision of their viral genomes. The integration reaction is highly directional; recombination between the phage attachment site attP and the host attachment site attB to form the hybrid sites attL and attR is essentially irreversible. In a recent model, extended coiled-coil (CC) domains in the integrase su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 34 شماره
صفحات -
تاریخ انتشار 2014